Analytical construction of Weil curves over function fields
نویسندگان
چکیده
منابع مشابه
Analytical construction of Weil curves over function fields
© Université Bordeaux 1, 1995, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملCurves over Finite Fields Attaining the Hasse-Weil Upper Bound
Curves over finite fields (whose cardinality is a square) attaining the Hasse-Weil upper bound for the number of rational points are called maximal curves. Here we deal with three problems on maximal curves: 1. Determination of the possible genera of maximal curves. 2. Determination of explicit equations for maximal curves. 3. Classification of maximal curves having a fixed genus.
متن کاملHodge Theory and the Mordell-weil Rank of Elliptic Curves over Extensions of Function Fields
We use Hodge theory to prove a new upper bound on the ranks of Mordell-Weil groups for elliptic curves over function fields after regular geometrically Galois extensions of the base field, improving on previous results of Silverman and Ellenberg, when the base field has characteristic zero and the supports of the conductor of the elliptic curve and of the ramification divisor of the extension a...
متن کاملSelmer groups and Mordell-Weil groups of elliptic curves over towers of function fields
In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...
متن کاملRanks of elliptic curves over function fields
We present experimental evidence to support the widely held belief that one half of all elliptic curves have infinitely many rational points. The method used to gather this evidence is a refinement of an algorithm due to the author which is based upon rigid and crystalline cohomology.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 1995
ISSN: 1246-7405
DOI: 10.5802/jtnb.129